1.2 Ultrastructures of Cells

Electron Microscope

Electron Microscope (EM)

• Light microscopes are limited in magnification by visible light with large wavelengths (400-700 nm)

- LM have a resolution to 0.2µm
- \cdot EM have much smaller wavelength and have a resolution to 0.001 μm (200X greater than LM)
- Understanding the workings of cells became more evident with the improved visibility of the ultra structures

T.E.M S.E.M

Transmission

Scanning

• What differences do you notice about the two cell types?

Prokaryotic VS Eukaryotic

Prokaryotic Cell

Prokaryotic VS. Eukaryotic

Prokaryotic Cells eg: Bacteria & Archaea

Prokaryotic Vs. Eukaryotic

Eukaryotic Cells *(having true nucleus)* eg: Animal, Plant, and Fungi - Amoeba - Cheek

Prokaryote

Eukaryote

Prokaryotic VS Eukaryotic

Prokaryotic Cell:

- Small and simple (lack membrane bound organelles) but have a membrane and a wall
- Single circular strand of DNA
- always single celled
- primitive; evolved first (4 bya?)

Eukaryotic Cells :

- Organelles that are membrane-bound
- DNA in a double membrane nucleus
- single or multicellular
- evolved from prokaryotic cells
- (2 bya?)

Advantages of Organelles

- Specialized roles and function
- Membrane bound compartments provide protection

eg. Lysosomes are organelles that could destroy the cell if exposed

- Different conditions could exist in different areas.
- They can be transported.

- Nucleus
 - double membrane bound with pores
 - contains chromatin- DNA that is coiled around proteins, Chromosomes during Mitosis.
 - Contains a nucleolus where ribosomes are made

- Rough Endoplasmic Reticulum
 - flattened membrane sacs called cisternae
 - function is to synthesize proteins for the cell to excrete
 - ribosomes attached to the membrane make the proteins
 - proteins are passed into cisternae the to vesicles

- Golgi Apparatus
 - Similar structure to Rough E.R.
 - Cisternae are shorter and stacked
 - Proteins from the E.R. are received, processed, and then sent out of the cell.

• Lysosome

- spherical single membrane vesicles form by Golgi
- stain dark under EM caused of dense protein concentration
- Digestive organelle
- eventually breaks and kills the cell (apoptosis)

• Mitochondria

- double membraned
- inner membrane from folds called cristae
- inside is a fluid filled matrix where the cells energy molecule called ATP is made through cellular respiration

• Free Ribosomes

- same as ribosomes on the E.R.
- No membranes, consisting of two protein subunits. one is 30 S, the second 50 S (80S total size)
- synthesize proteins that cells make

Fig. 6-11

- Vacuoles and Vesicles
 - Single membrane
 - Large in plants, small and animal
 - Animals form vacuoles to store food
 - Unicellular organisms like *paramecium* use vacuoles to excrete water

• Chloroplast

- Double membrane bound
- Inside contains flattens stacks of membranes called thylakoids
- Usual oval or spiracle
- Produce glucose from photosynthesis

- Centrioles and Microtubules
 - Cylindrical fibres form microtubules gives the cell structure
 - Move chromosomes
 - Centrioles consist of 9 triple microtubules bundles
 - Centrioles form the anchor point for microtubules

- Flagella and Cilia
 - Are whip like structures
 - Consists of a ring of nine double microtubules
 - Flagella are long cilia short
 - 9 double microtubules and 2 central ones

Eukaryote

The Inner Life of the Cell