Balancing Chemical Equations

Reactants: $\mathrm{Zn}+\mathrm{I}_{2} \longrightarrow$ Product: $\mathbf{Z n} \mathrm{I}_{2}$

Chemical Equations

$$
\mathrm{Al}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \cdots \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}
$$

Chemical Equations

Because of the principle of the conservation of matter, an equation must be balanced. $4 \mathrm{Al}{ }_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$

It must have the same number of atoms of the same kind on both sides.

Balancing Equations

- To balance, you may add coefficients in front of the compounds

DO not ${ }_{\text {change the susscippts }}$

Chemical Equations

$4 \mathrm{Al}+3 \mathrm{O}_{2}-->2 \mathrm{Al}_{2} \mathrm{O}_{3}$
This equation means
4 Al atoms

+ (combined with)
$3 \mathrm{O}_{2}$ molecules
---produces or yields $-->$
2 molecules of $\mathrm{Al}_{2} \mathrm{O}_{3}$

Steps to Balancing Equations

1. Write the correct formula for the reactants and the products. (NO BALANCING YET)
2. Find the number of atoms for each element on the left side.
3. Compare those against the number of the atoms of the same element on the right side.

4. Place a coefficients in front of formulas so that the left side has the same number of atoms as the right side for EACH element.
5. Check to see if the numbers of atoms on both sides of the equation are now balanced.

Balancing Equations

Balancing Equations

Balancing Equations

$\xrightarrow[2]{ } \mathrm{H}_{2}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow->\underset{2}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Balancing

Equations

$\ldots \mathrm{Al}(\mathrm{s})+\ldots \mathrm{Br}_{2}(\mathrm{l}) \rightarrow \mathrm{Al}_{2} \mathrm{Br}_{6}(\mathrm{~s})$

Balancing
Equations

2_ $\mathrm{Al}(\mathrm{s})+\ldots 3 \mathrm{Br}_{2}(\mathrm{I}) \rightarrow+\mathrm{Al}_{2} \mathrm{Br}_{6}(\mathrm{~s})$

Balancing Equations

Now Let us try some more.

$\mathrm{Zn}+\ldots \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\ldots \mathrm{H}_{2}$
$\mathrm{Cu}+\ldots \mathrm{AgNO}_{3} \rightarrow \ldots \mathrm{Cu}^{-}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \ldots \mathrm{Ag}$
$\mathrm{Fe}+\ldots \mathrm{Cl}_{2} \rightarrow \ldots \mathrm{FeCl}_{3}$

