Balancing Chemical Equations

Reactants: $Zn + I_2$ — Product: $Zn I_2$

Chemical Equations

$$AI_{(s)} + O_{2(g)} ---> AI_{2}O_{3(s)}$$

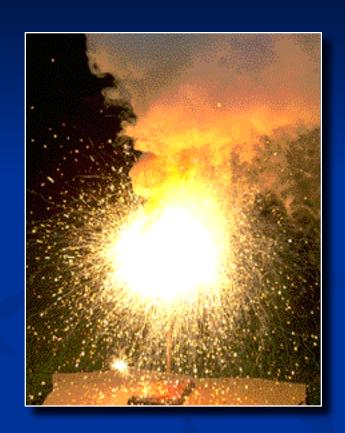
Chemical Equations

Because of the principle of the conservation of matter, an equation must be balanced.

$$4 \text{ Al}_{(s)} + 3 O_{2(g)} \longrightarrow 2 \text{ Al}_{2}O_{3(s)}$$

It must have the same number of atoms of the same kind on both sides.

 To balance, you may add coefficients in front of the compounds


Do not change the subscripts.

Chemical Equations

 $4 \text{ Al} + 3 \text{ O}_2 ---> 2 \text{ Al}_2 \text{ O}_3$

This equation means

- 4 Al atoms
- + (combined with)
- 3 O₂ molecules
 - ---produces or yields -->
- 2 molecules of Al₂O₃

Steps to Balancing Equations

- 1. Write the correct formula for the reactants and the products. (NO BALANCING YET)
- 2. Find the number of atoms for each element on the left side.
- 3. Compare those against the number of the atoms of the same element on the right side.

$$H_2$$
 + O_2 ---> H_2O
 H O H O 2 1

- 3. Place a coefficients in front of formulas so that the left side has the same number of atoms as the right side for EACH element.
- 4. Check to see if the numbers of atoms on both sides of the equation are now balanced.

H ₂	+	$O_2 \rightarrow$	² H ₂ O
Н		0	н о
2		2	2 1

2H ₂ +	\cdot $O_2 \rightarrow$	2 H	₂ O
Н	O	Н	0
2	2	2	1
4	2	4	2
Hydrogen	= 4	Hydrogen = 4	
Oxygen =	2	Oxygen = 2	
THIS NOV	V A BALA	NCED EQ	UATION

$$\frac{2}{2}$$
 H₂(g) + $\frac{2}{2}$ H₂O(l)

$$_{---}$$
 Al(s) + $_{---}$ Br₂(l) ---> $_{---}$ Al₂Br₆(s)

$$_2$$
 Al(s) + $_3$ Br₂(l) ---> $_1$ Al₂Br₆(s)

Now Let us try some more.

___ Zn + ___ HCl ---> __ZnCl₂ + ___H₂

___ Cu + ___ AgNO₃ ---> ___ Cu(NO₃)₂ + ___ Ag

Fe + ___Cl₂ ---> ___FeCl₃