Does mass change after a chemical reaction occurs?

Answer- NO

Why?

Lavoisier stated 'that the <u>mass</u> of a <u>closed system</u> will remain constant, regardless of the reactions inside the system.'

Law of conservation of mass

Counting Atoms in a Formula

Ca The symbol by itself represents one atom ex. One calcium atom

N₂ The subscript indicates the number of atom found in the preceding element

ex. 2 nitrogen atoms

This subscript indicates the number of atoms found in the preceding element

ie. 2 Iron atoms

 Fe_2SO_4

- 4 Oxygen atoms
- 1 sulfur atoms

Total atoms= 7

 $Mg_3(PO_4)_2$. This subscript multiplies all the elements in the bracket

ie. 2 x $O_4 = 8$ oxygen 2 x P = 2 phosphorus

This subscript indicates the number of atoms found in the preceding element

- ie. 3 Magnesium atoms
 - 4 Oxygen atoms
 - 1 Phosphorus atom

3 FeBro₄ There are 12 oxygen atoms (3 x 4 oxygen)

This COEFFICIENT multiplies the number of atoms of each element in the formula.

- ie. 3 x 1 Iron atoms
 - 3 x 1 bromine atoms
 - 3 x 4 Oxygen atoms

Na₃P

Type of Atoms	# of Atoms
Sodium	3
Phosphorus	1
Total	4

 Na_2CO_3

Type of Atoms	# of Atoms
Sodium	2
Carbon	1
Oxygen	3
Total	6

Type of Atoms	# of Atoms
Iron	1
Sulfur	1
Oxygen	4
Total	6

Fe SO₄

3 NaOH	Type of Atoms	# of Atoms
	Sodium	3
	Oxygen	3
	Hydrogen	3
	Total	9

$Cu(NO_3)_2$	Type of Atoms	# of Atoms
	Copper	1
	Nitrogen	2
	Oxygen	6
	Total	9

$3 \text{ K}_2 \text{SO}_4$	Type of Atoms	# of Atoms
	Potassium	6
	Sulfur	3
	Oxygen	12
	Total	21

$3 Al_{2}(SO_{4})_{3}$	Type of Atoms	# of Atoms
2 x 3 Al	Aluminum	6
1 x 3 x 3 S	Sulfur	9
4 x 3 x 3 O	Oxygen	36
	Total	51