Does mass change after a chemical reaction occurs?

Answer- NO

Why?

Lavoisier stated 'that the mass of a closed system will remain constant, regardless of the reactions inside the system.'

Law of conservation of mass

Counting Atoms in a Formula

How many atoms are shown in the following formulas?

Ca The symbol by itself represents one atom ex. One calcium atom
\mathbf{N}_{2} The subscript indicates the number of atom found in the preceding element
ex. 2 nitrogen atoms

How many atoms are shown in the following formulas?

$\mathrm{Fe}_{2} \mathrm{SO}_{4}$

This subscript indicates the number of atoms found in the preceding element ie. 2 Iron atoms

4 Oxygen atoms
1 sulfur atoms
Total atoms= 7

How many atoms are shown in the following formulas?

$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$This subscript multiplies all the elements in the bracket

$$
\text { ie. } 2 \times \mathrm{O}_{4}=8 \text { oxygen } \quad \begin{aligned}
2 & \times \mathrm{P}=2 \text { phosphorus }
\end{aligned}
$$

This subscript indicates the number of atoms found in the preceding element ie. 3 Magnesium atoms

4 Oxygen atoms
1 Phosphorus atom

How many atoms are shown in the following formulas?

3 FeBrO There are 12 oxygen atoms (3×4 oxygen)
$3 \mathrm{FeBrO}_{4}$

This COEFFICIENT multiplies the number of atoms of each element in the formula.
ie. 3×1 Iron atoms
3×1 bromine atoms
3×4 Oxygen atoms

Count the atoms in these Compounds!

$\mathrm{Na}_{3} \mathrm{P}$

Type of Atoms	\# of Atoms
Sodium	3
Phosphorus	1
Total	4

Count the atoms in these Compounds!

$\mathrm{Na}_{2} \mathrm{CO}_{3}$

Type of Atoms	\# of Atoms
Sodium	2
Carbon	1
Oxygen	3
Total	6

Count the atoms in these Compounds!

$\mathrm{Fe} \mathrm{SO}_{4}$

Type of Atoms	\# of Atoms
Iron	1
Sulfur	1
Oxygen	4
Total	6

Count the atoms in these Compounds!

3 NaOH

Type of Atoms	\# of Atoms
Sodium	3
Oxygen	3
Hydrogen	3
Total	9

Count the atoms in these Compounds!

$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	Type of Atoms	\# of Atoms
	Copper	1
	Nitrogen	2
Oxygen	6	
Total	9	

Count the atoms in these Compounds!

$3 \mathrm{~K}_{2} \mathrm{SO}_{4}$

Type of Atoms	\# of Atoms
Potassium	6
Sulfur	3
Oxygen	12
Total	21

Count the atoms in these Compounds!

$3 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	Type of Atoms	\# of Atoms
$2 \times 3 \mathrm{Al}$ $1 \times 3 \times 3 \mathrm{~S}$	Aluminum	6
$4 \times 3 \times 3$	Sulfur	9
	Oxygen	36
	Total	51

