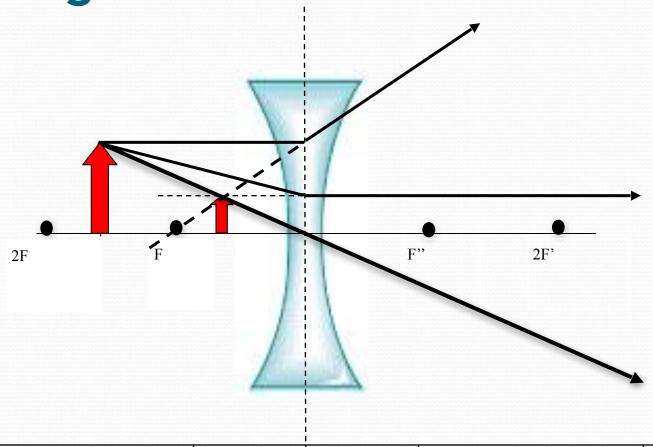

Lenses 2: DIVERGING LENSES

Concave Lenses

- A diverging lens is sometimes called a concave lens because it is thinner in the centre than at the edges.
- As parallel light rays pass through a concave lens, they are refracted away from the principal axis.
- The light rays diverge and they will never meet on the other side of the lens.
- The image formed is always upright, virtual and smaller than the object



Drawing a Concave Lens Ray Diagram

- Any two of the following rays may be used to locate the image:
- 1. A ray parallel to the principal axis will refracted away from the principal focus (F).
- 2. A ray that directed to the secondary principal focus (F') will refracts parallel to the principal axis.
- 3. A ray that passes through the optical centre goes straight through without refracting.
- Only two of these lines are needed to find the image

Drawing a Concave Lens Ray Diagram

S: Smaller

A: Upright

L: In front of F

T: Virtual

Concave Lenses

Distance of Object from Lens	Type of Image Formed	How the Image Is Used	Ray Diagram
All distances	Smaller, upright	Some types of eyeglasses and telescopes make use of the diverging properties of concave lenses. These lenses are often used in combination with converging lenses.	object ray 1 F image