Weekend assignment.

- Comparing genes in different species
- Go to COMPARING GENES on page 144
- Try the online data sites (SEE DEMO)
- Compare search the Gene HBB in Humans Homo Sapiens, Macaca monkeys, and Orangutang Pongo
- Compare the first 120 bps —-> calculate the percent similarities between human vs rhesus monkey and human vs orangutang
- Look at DATA Base 2,3,4 on 145.

From last day, match the term with the correct description.

a. Gene _____ Two different expressions of the same gene

b. Allele _____ location of a gene on the chromosome

c. Chromosome _____ DNA that is loosely coiled

d. Genome _____ It's a segment of DNA which codes for a protein

e. Chromatin _____ The entire collection of DNA from a diploid cell of an organism

f. Locus _____ A body cell, or a cell that is diploid

g. Somatic _____ DNA that is tightly coiled invisible during cell division

The following is a segment of DNA from the hemoglobin molecule from three different species. Which hypothesis which 2 species are most closely related based on these seqments? Provide a reason for your answer.

 Species 1
 GGACAAGGTGAATGAGGAAGAAGAAGTTGGTGGTGGTGAGCCCTGGGCAGGTTAG

 Species 2
 GGGCAAGGTGAATGTGGACGAAGTTGGTGGTGGTGAGGCCCTGGGCAGGTTGG

 Species 3
 GGGCAAGGTGAAAGTGGAAGTGGAAGTTGGTGGTGGTGGTGAGGCCCTGGGCAGGTAGG

Genes Day 2

What is a Genome?

The entire base sequence of a DNA molecule of an organism.

- In human- 46 Chromosomes in the nucleus + the mitochondrial DNA
- In Plants- The Chromosomes DNA in the nucleus+ mitochondrial DNA + Chloroplast DNA
- In Prokaryotes A small circular piece of DNA + plasmids (tiny pieces of DNA loops)

Alleles

Asp294His

- in humans there approximately 3 billion base pairs found in 23 pairs of chromosomes
- some sequence are called genes and are recipes for cooking up proteins
- In a gene every 3 base pairs are words in the recipe called = codons (codons code for an amino acids)

The Genetic Codon Chart

NS -----

	U	С	A	G	
U	UUU → Phe	ucu → Ser	UAU → Tyr	UGU → Cys	U
	UUC → Phe	UCC → Ser	UAC → Tyr	UGC → Cys	С
	UUA → Leu	UCA → Ser	UAA → Stop	UGA → Stop	Α
	UUG → Leu	UCG → Ser	UAG → Stop	UGG 🌩 Trp	G
С	CUU → Leu	CCU → Pro	CAU → His	CGU → Arg	U
	CUC → Leu	CCC → Pro	CAC → His	CGC -> Arg	С
	CUA → Leu	CCA → Pro	CAA → Gln	CGA → Arg	A
	CUG → Leu	CCG → Pro	CAG → Gln	CGG - Arg	G
A	AUU → Ile	ACU -> Thr	AAU -> Asn	AGU → Ser	U
	AUC -> Ile	ACC Thr	AAC Asn	AGC Ser	С
	AUA -> Ile	ACA -> Thr	AAA -> Lys	AGA - Arg	A
	AUG 🕈 Met	ACG → Thr	AAG - Lys	AGG → Arg	G
G	GUU → Val	GCU → Ala	GAU - Asp	GGU → Gly	U
	GUC -> Val	GCC -> Ala	GAC -> Asp	GGC → Gly	С
	GUA → Val	GCA -> Ala	GAA → Glu	GGA → Gly	A
	GUG → Val	GCG → Ala	GAG → Glu	GGG → Gly	G

Using the chart figure out the amino acids that are coded for by the following **codons**

CUG UAA CGC UUA GAU

Blond-Alleles

Percentage of light hair in Europe

Red-Alleles

Asp294His

Mutations- changes in the DNA code

- + changes results in improved success to the individual
- neutral(Ø) changes results has no effect
- changes results in creating a disadvantage

Small-Scale - Mutations

• point mutations (single base pair)

-Substitution of a letter (mis-sense, non-sense)

-mis-sense (one amino acid)

–non-sense (premature stop making a short protein)

-Insertion/deletion of a letter (called frameshift mutations)

-frameshift (every amino acid is affected down the line)

-Silent mutation changes that have no effect on the end protein

THE FAT CAT SAT THE FAD CAT SAT THE ATC ATS AT THE EFA TCA TSA T

Point mutation (One letter wrong)

chemical component

What happens to the protein in the following 4 cases?

Correct RNA sequence CCU CUC GAA UAU GGG

MUTATION #1 CCU CUG GAA UAU GGG

MUTATION #2 CCU GUC GAA UAU GGG

MUTATION #3 CCC UCG AAU AUG GG

MUTATION #4 CCU CUC GAA UAA GGG

	U	С	A	G	
U	UUU → Phe UUC → Phe UUA → Leu UUG → Leu	$UCU \rightarrow Ser$ $UCC \rightarrow Ser$ $UCA \rightarrow Ser$ $UCG \rightarrow Ser$	UAU → Tyr UAC → Tyr UAA → Stop UAG → Stop	UGU → Cys UGC → Cys UGA → Stop UGG → Trp	U C A G
с	$CUU \rightarrow Leu$ $CUC \rightarrow Leu$ $CUA \rightarrow Leu$ $CUG \rightarrow Leu$	$\begin{array}{c} CCU \rightarrow Pro\\ CCC \rightarrow Pro\\ CCA \rightarrow Pro\\ CCG \rightarrow Pro\end{array}$	CAU → His CAC → His CAA → Gln CAG → Gln	$CGU \rightarrow Arg$ $CGC \rightarrow Arg$ $CGA \rightarrow Arg$ $CGG \rightarrow Arg$	U C A G
A	$\begin{array}{c} AUU \Rightarrow Ile \\ AUC \Rightarrow Ile \\ AUA \Rightarrow Ile \\ AUG \Rightarrow Met \end{array}$	$ACU \rightarrow Thr$ $ACC \rightarrow Thr$ $ACA \rightarrow Thr$ $ACG \rightarrow Thr$	$AAU \Rightarrow Asn$ $AAC \Rightarrow Asn$ $AAA \Rightarrow Lys$ $AAG \Rightarrow Lys$	AGU \rightarrow Ser AGC \rightarrow Ser AGA \rightarrow Arg AGG \rightarrow Arg	U C A G
G	$\begin{array}{c} \mathbf{GUU} \twoheadrightarrow \mathrm{Val} \\ \mathbf{GUC} \twoheadrightarrow \mathrm{Val} \\ \mathbf{GUA} \twoheadrightarrow \mathrm{Val} \\ \mathbf{GUG} \twoheadrightarrow \mathrm{Val} \end{array}$	$\begin{array}{c} GCU \twoheadrightarrow Ala \\ GCC \twoheadrightarrow Ala \\ GCA \twoheadrightarrow Ala \\ GCG \twoheadrightarrow Ala \end{array}$	$GAU \Rightarrow Asp$ $GAC \Rightarrow Asp$ $GAA \Rightarrow Glu$ $GAG \Rightarrow Glu$	$\begin{array}{c} GGU \rightarrow Gly \\ GGC \rightarrow Gly \\ GGA \rightarrow Gly \\ GGG \rightarrow Gly \end{array}$	U C A G

Human Genome Project

Human Genome Discoveries

- Increase numbers and types of genes (23,000)
- Discovery of Junk DNA (sequences that don't make protein) vs Satellite DNA (sequences Repetitive sequence that make up the centromere in most cases)

One long piece of DNA that is 50 bases long was sequence using the Sanger method of sequencing

four fragments that have overlapping segments were produced below. Try to determine the original length of DNA..

CGGGTAGCTT

GAGCCCTTAGCCGGG

GCTTAGTCTACC

CTACCCTTAGGAA

Assignment

Make a chart of the following point mutations disorders

- •Colour Blindness
- Haemophilia
- Cystic fibrosis
- Phenylketonuria
- Sickle cell

In the chart, include the following headings; Gene Affected, Type of Mutation, Symptoms, and Side Effect of the Mutation.