The I.A.

Formulation of a Question

- This stage involves personal research of a topic
 - library search -U.of W.
 - scientific journal article as a guide and reference
 - web searches
- What have others done before you?
- Requires you to read other scientific work to guide you to your question and REFERENCE
- Determining a good question can sometimes be difficult and may affect the outcome of your investigation

The Hypothesis

- The hypothesis is a conjecture.
 - Today —> Hypothesis. There is a difference in size between males and females in of *Tenebrio molitor*
 - Null Hypothesis. There is no difference

Testing

- Exhaust list of **controls** to identify
 - ensure the right species (*T. molitor*)
 - same experiment procedure
 - same methods of measurement
 - consistent examiner
 - only healthy ones chosen

Testing

- Seek advice from others
 - Professionals
 - Teachers
 - Professors

Testing

- Strategic planning and the design of the experiment.
 - how to measure accurately
 - how to collect data
 - use consistent methodology
 - document everything- how you did something and why
 - errors are recording, problems are documented, changes noted and reason

Data

- Collect and organize on it spreadsheets
- label everything, save everything
- CONDUCT STATISTICAL TESTING
 - finding means
 - calculating standard deviation

Ele Ed	t yew Insert For	met Tools	Data Window	w Help					Туре	a question for help	
1039	3 3 9 - 121	I O E IA	rial	• 10	• B	Z U	E 3	三 三 四	5 % ,	****	34 - 1
P42	- fx						_				_
A	B	C	D	E	F	G		н	1	J	k
1	Invoice Number	Amount	Lead Digit								
2							Tes	st 1: First	Digit	Benford's Law	
3	12345	\$ 432.65	4			Dig	it	Actual	Expected	Expected %	
4	12346	\$ 657.56	6			1		4	9.03	30.1%	
5	12347	\$ 440.63	4			2		3	5.28	17.6%	
6	12348	\$ 256.02	2			3		2	3.75	12.5%	
7	12349	\$ 41.57	4			4		7	2.88	9.6%	
8	12350	\$ 678.87	6			- 5		3	2.37	7.9%	
9	12351	\$ 829.54	8			6		3	2.01	6.7%	
10	12352	\$ 519.58	6			7		3	1.74	5.8%	
11	12353	\$ 435.72	4			8		2	1.53	5.1%	
12	12354	\$ 913.34	9			9		3	1.38	4.6%	
13	12355	\$ 176.87	1								
14	12356	\$ 208.83	2			Sum:		30	29.97	100%	
15	12357	\$ 79.84	7			Chi-Se	quar	e Probabi	lity:	7.89%	
16	12358	\$ 737.88	7								
17	12359	\$ 132.22	1								_
18	12360	\$ 436.87	4				Actu	al vs Exp	ected Count	ts	- 1
19	12361	\$ 19.92	1								1
20	12362	\$ 554.31	5		**						- 1
21	12363	\$ 432.19	4		10 -						- 1
22	12364	\$ 256.23	2	- S	8 -						-1
23	12365	\$ 98.65	9	12						Actual	- 11
24	12366	\$ 429.33	4	8	6 -					- 5	, H
25	12367	\$ 778.25	7	8						Expecte	•
26	12368	\$ 87.96	8	2	° 10	1 1	r II.				-
27	12369	\$ 667.12	6	4	2 -			In L	Lall		ŀ
28	12370	\$ 998.34	9	5					in in h	1	
29	12371	\$ 132.87	1		0 +			10,00		4	- 1
30	12372	\$ 565 34	5	_	1	2 3	4	5 6	7 8 9		ŀ
31	12373	\$ 335.97	3	-			L	red Digit			ł
32	12374	\$ 356.77	3	_							. 1
32	123/4	\$ 350.77	5		-						_

 Calculation T-Tests- a test the confirms that your results significant to confirm your hypothesis or reject your hypothesis

Appropriate Sample size

more is better

Distribution of Sample means with n = 10

Distribution of Sample means with n = 25

Distribution of Sample means with n = 50

Calculate Means

 $\bar{x} = \frac{\sum x}{n}$

 $ar{\chi}$ is the mean

n sample size

 $\sum \chi$ sum of the data you measured

- Averages don't tell everything.
- Samples can be very uniform with the data all bunched around the mean (Figure 1)
- Samples can be spread out a long way from the mean (Figure 2).

• The statistic that measures this spread is called the standard deviation. The wider the spread of measurements, the larger the standard deviation.

- 1. Calculate the mean (\bar{x}) of a set of data. (using a spreadsheet)
- 2. Subtract the mean from each point of data to determine $(x-\bar{x})$. You'll do this for each data point, so you'll have multiple $(x-\bar{x})$.
- 3. Square each of the resulting numbers to determine $(x-\bar{x})^2$. As in step 2, you'll do this for each data point, so you'll have multiple $(x-\bar{x})^2$.
- 4. Add the values from the previous step together to get $\sum (x-\bar{x})^2$. Now you should be working with a single value.
- 5. Calculate (n-1) by subtracting 1 from your sample size. Your sample size is the total number of data points you collected.
- 6. Divide the answer from step 4 by the answer from step 5
- 7. Calculate the square root of your previous answer to determine the standard deviation.
- 8. The standard deviation should have the same unit as the raw data you collected. For example, SD = +/-0.5 cm.

Conducting a T-test

- The Student's t-test is a statistical test that compares the mean and standard deviation of two samples to see if there is a significant difference between them.
 - typically control VS experimental data
 - eg Male size vs Female size in *T. molitor*

Mean sizes of adult T. molitor

Conducting a T-test

- The Student's t-test is a statistical test that compares the mean and standard deviation of two samples to see if there is a significant difference between them.
 - typically control VS experimental data
 - eg Male size vs Female size in *T. molitor*

Systolic Blood Pressure Before and After Treatment

Conducting a T-test

- The T-test is a test of a **statistical significant difference between two groups.**
 - Results may be as a result of your manipulated test or
 - A result of chance.

Where:

- $\overline{x_1}$ is the mean of sample 1 (*control*)
- s1 is the standard deviation of sample 1
- n1 is the sample size of sample 1
- \overline{x}_2 is the mean of sample 2 (*Test group*)
- s₂ is the standard deviation of sample 2
- n2 is the sample size in sample 2

How to Calculate T:

1.Calculate the mean (\overline{X}) of each sample

- 2.Find the absolute value of the difference between the means
- 3.Calculate the <u>standard deviation</u> for each sample
- 4. Square the standard deviation for each sample
- 5.Divide each squared standard deviations by the sample size of that group.
- 6.Add these two values
- 7. Take the square root of the number to find the "standard error of the difference.
- 8. Divide the difference in the means (step 2)
 - by the standard error of the difference (step 7).
 - The answer is your "calculated T-value."

9. Determine the degrees of freedom (df) for the test. In the ttest, the degrees of freedom is the sum of the sample sizes of both groups minus 2. $(n_1 + n_2 - 2)$

10. Determine the "Critical T-value" in a table by triangulating your **df** and the "p value" of 0.05.

Degrees	Significance level										
of	20%	10%	5%	2%	1%	0.1%					
freedom	(0.20)	(0.10)	(0.05)	(0.02)	(0.01)	(0.001)					
1	3.078	6.314	12.706	31.821	63.657	636.619					
2	1.886	2.920	4.303	6.965	9.925	31.598					
3	1.638	2.353	3.182	4.541	5.841	12.941					
4	1.533	2.132	2.776	3.747	4.604	8.610					
5	1.476	2.015	2.571	3.365	4.032	6.859					
6	1.440	1.943	2.447	3.143	3.707	5.959					
7	1.415	1.895	2.365	2.998	3.499	5.405					
8	1.397	1.860	2.306	2.896	3.355	5.041					
9	1.383	1.833	2.262	2.821	3.250	4.781					
10	1.372	1.812	2.228	2.764	3.169	4.587					
11	1.363	1.796	2.201	2.718	3.106	4.437					
12	1.356	1.782	2.179	2.681	3.055	4.318					
13	1.350	1.771	2.160	2.650	3.012	4.221					
14	1.345	1.761	2.145	2.624	2.977	4.140					
				0 000	0.047	4 070					

- 11. Draw your conclusion:
 - If your calculated t value is greater than the critical Tvalue from the table, —> there is a significantly different.
 - We reject the null hypothesis and conclude that the alternative hypothesis is correct. *ie. your prediction was right you're onto something*
 - If your calculated t value is lower than the critical T-value —> NOT significantly different. We accept the null hypothesis. *ie. your hunch was incorrect.*