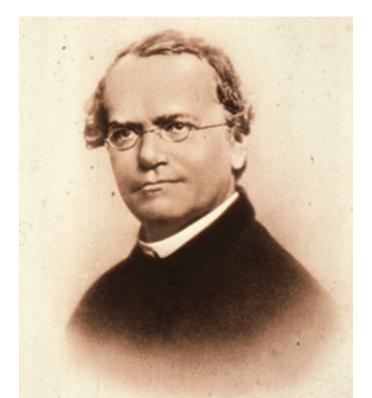

Genetic Continuity

traits - distinguishing characteristics

- breeders can select for certain traits
- eg. disease resistance in wheat
 - extra spots on a dalmatian
 - hairless cats (Rex)

Early Theories of Inheritance...

Leeuwenhoek


Aristotle

Darwin (& many others)

The Inheritance of One Trait

Gregor Mendel

Austrian monk who studied heredity from 1853-61

Flower color	Purple	×	White
Flower position	Axial	×	Terminal
Seed color	Yellow	×	Green
Seed shape	Round	×	Wrinkled
Pod shape	Inflated	×	Constricted
Pod color	Green	×	Yellow
Stem length	Tall	×	Dwarf

Principle of Dominance - individuals with contrasting traits are crossed, the offspring will only express the dominant trait

Law of Segregation - inherited traits are determined by pairs of factors. These factors separate in gametes (one in each).

factors = allele

alleles = alternative forms of a gene (or different options)

eg., yellow and green are different alleles for seed colour

homozygous - state when the alleles are the same (2 dominant or 2 recessive..ie purebred for a trait) (P generation for Mendel eg. TT or tt)

heterozygous - when the alleles are different (1 dominant, 1 recessive) (F1 generation eg. Tt)

Punnett Squares:

- Using these two laws, punnett squares can determine what we will see in the F1 & F2 generations.
 - tool used to calculate the probability of getting a trait
 - allows you to determine the phenotype and genotype

Punnett Squares:

 phenotype - visible appearance of a trait eg: the plants are tall or dwarf

Punnett Squares:

 genotype - genetic make-up of an organism (alleles)

TT or Tt