Beyond Mendel's Laws

Beyond Mendel's Laws

Incomplete Dominance

Beyond Mendel's Laws

Incomplete Dominance

- blending of a single trait
- when heterozygous individuals expresses neither one of the trait
- ---> intermediate expression of traits

eg: flower colour in snapdragons - 2 alleles are red (CR) & white (CW)

What do you see in the F1 generation? (CRCR X CWCW)

What do you see in the F2 generation?

Phenotype- 1 RED : 2 Pink : 1White

The allele for normal hemoglobin is represented by Hb^A, and the allele for sickle cell hemoglobin is represented as Hb^S. Individuals who are homozygous (Hb^SHb^S) have sickle cell anemia. Individuals who are heterozygous have someone normal and some sickled red blood cells. What is the outcome of offspring between a man and a woman who are both carriers (has one allele) for sickle cell?

SICKLE-CELL ANEMIA

human erythrocytes of a patient with sickle-cell anemia

Co-dominance

Co-dominance

 both alleles are dominant; both are expressed in the heterozygous individuals

eg: Feather colour in chickens - 2 alleles are black (I^B) and white (I^W)

 $I^{B} I^{B} = Black$ $I^{B} I^{W} = Black$ and White $I^{W} I^{W} = White$

A black chicken is crossed with a checkered chicken. What is the phenotypic and genotypic outcome?

Black- IB IB

Checkered I^B I^W

Multiple Alleles

- more than two alleles involved eg: blood types
 - 3 alleles are A, B, O
 - everyone has 2 of the 3 alleles
 - represented by IA, IB, i

- A & B: co-dominant with each other
 - dominant over O

What is the genotype of:

Type A- $I^A i$ or $I^A I^A$

Type B- IBi or IBIB

Type AB- IAIB

Type O- ii

A man with blood type A meets a woman of blood type B. They have four kids, each with a different blood type.

- a. What are the possible genotypes of the man?
- b. What are the possible genotypes of the woman?

c. Show the cross that will produce the proper results.

A man and a woman can have kids that are A and AB, but not B and O.

a. What are the two possibilities for genotypes of the parents?

Class and Homework

- » Try the 5 questions on Edsby in the PDF
- » Data Based questions , page 172-3 on mouse coat colour
- » Data based questions, page 173 on Spots of Ladybird beetles