The Polymerase Chain Reaction denaturating polymerization denaturating polymerization denaturating polymerization

DNA sample

 in order to understand a gene and study it or us it for DNA study, more than just a small single sample of DNA is needed. It must be copied or Amplified

Polymerase Chain Reaction (PCR)

- a direct method of making many copies of a DNA sequences in the lab.
- DNA is copied repeatedly for thirty cycles... each cycle doubles the number of DNA molecules (exponential increase)
 - 1,2,4,8,16,32,64.....billions
- useful in forensics, medical diagnosis and genetic research because a small amount of DNA can be amplified

PCR - 3 Steps Involved:

1. Denaturing (95°C)

- separates the double stranded DNA apart

2. Annealing (55°C)

- adding artifically synthesized DNA primers added to each 3' ends

3. Elongation (72°C)

both strands act as template
catalyzed by a DNA polymerase
enzyme called Tag polymerase

Taq polymerase - the enzyme used

- from Thermus aquaticus (a prokaryote that lives in hot springs)
- benefit: it does not denatured at the high temperatures needed in PCR
- works optimally at 72°C

Explain why human polymerase cannot be used in the PCR process to add nucleotides to the synthesized DNA.

PCR Animations

Look at step-by-step animation of PCR process in this excellent interactive "virtual lab":

<u>https://dnalc.cshl.edu/resources/animations/</u> <u>pcr.html</u>