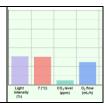
Na	me: Date:
	Student Exploration: Photosynthesis Lab
	cabulary : carbon dioxide, chlorophyll, glucose, limiting factor, nanometer, photosynthesis, velength
Pri	or Knowledge Questions (Do these BEFORE using the Gizmo.)
•	To survive, what gas do we need to breathe in?
•	Where is this gas produced?
Du pro and for A k of t Ph	photosynthesis, plants use the energy of light to oduce glucose (C ₆ H ₁₂ O ₆) from carbon dioxide (CO ₂), d water (H ₂ O). Glucose is a simple sugar that plants use energy and as a building block for larger molecules. by-product of photosynthesis is oxygen. Plants use some the oxygen they produce, but most of it is released. In the otosynthesis Lab Gizmo, you can monitor the rate of otosynthesis by measuring oxygen production.
	Select the BAR CHART tab. On the graph, notice the Oxygen production bar. Move the Light intensity slider back and forth. How does light intensity affect oxygen production?

A.	How does temperature affect oxygen production?	
Α.	now does temperature affect oxygen production?	

B. How does CO₂ level affect oxygen production? _____


C. How does oxygen production relate to the rate of photosynthesis? _____

Activity A: Ideal conditions

Get the Gizmo ready:

- Be sure that the BAR CHART tab is selected.
- Turn on Show numerical values.

Question: In the Gizmo, what are the ideal conditions for photosynthesis?

1. <u>Form hypothesis</u>: During photosynthesis, light energy is used to synthesize carbon dioxide (CO₂) and water (H₂O) into glucose (C₆H₁₂O₆) and oxygen (O₂). The complex series of chemical reactions is summarized by the following formula:

 $6CO_2 + 6H_2O + light energy \rightarrow C_6H_{12}O_6 + 6O_2$

In the Gizmo, what light intensity and CO₂ level do you think will maximize the rate of photosynthesis?

2. <u>Experiment</u>: Use the Gizmo to find the ideal conditions for photosynthesis. Use any method you like. When you think you have the answer, list the conditions below.

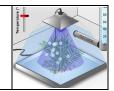
Temperature	Light intensity	CO ₂ level	Oxygen production

3. Revise and repeat: One way to test if you've found the ideal conditions is to change each variable slightly from the value that you recorded above. If the oxygen production decreases with each change that you make, it is likely you have found the ideal conditions. If a small change causes oxygen production to increase, continue to experiment.

If necessary, revise your numbers in the table above.

- 4. Think and discuss: Think about the process of finding the ideal conditions.
 - A. Why would it be hard to find the ideal light intensity if the temperature were very hot

or cold? _____

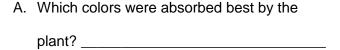

B. Why would it be hard to find the ideal CO₂ level if the light intensity were very low?

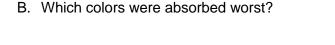
Activity B:

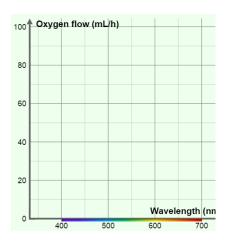
Colored light

Get the Gizmo ready:

- Select the COLOR tab and the BAR CHART tab.
- Set the **Temperature** to 24°C, the **Light intensity** to 90%, and the **CO₂ level** to 1,000 ppm.


Introduction: Plants use a green pigment called **chlorophyll** to absorb light and convert its energy into a form that the plant can use. Chlorophyll gives plants their green color.

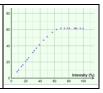

Question: What color of light is the best for photosynthesis?


- Observe: The color of a light wave is determined by its wavelength. On the COLOR tab, slowly drag the Light wavelength slider back and forth and observe the effect on oxygen production. How does the color of light affect the rate of photosynthesis?
 Form hypothesis: Which color of light do you think will maximize the rate of photosynthesis?
- 3. <u>Gather data</u>: Set the **Light wavelength** to 400 nm. (The symbol "nm" stands for **nanometers**. A nanometer is a billionth of a meter.) Visible light ranges from 400 to 700 nm.

On the TABLE tab, click **Record data**. Then set the **Light wavelength** to 420 nm, and repeat. Continue recording data in the Gizmo every 20 nm until the wavelength is 700 nm.

4. Make a graph: Select the GRAPH tab and select Wavelength. Sketch the graph in the space at right.

5. Think and discuss: When we look at a leaf, we see the colors of light that are reflected off its surface. How does this explain the relatively low flow of oxygen in green light?



Extension:

Limiting factors

Get the Gizmo ready:

- Select the WHITE tab and the BAR CHART tab.
- Turn on **Show numerical values**.

Introduction: Photosynthesis requires light, water, and CO_2 to work. When one of these factors is in short supply, it is called a **limiting factor**. Temperature can also be a limiting factor when it is too hot or too cold for photosynthesis to work well.

Question: What is the effect of limiting factors on photosynthesis?

1.	<u>Obser</u>	eve: Set Temperature to 24°C, Light into	ensity to 50%, and CO ₂ level to 200 ppm.
	A.	Move the Temperature slider up and d	lown. Were you able to increase oxygen
		production?	(Return the slider to 24°C when finished.)
	B.	Move the Light intensity slider back a	nd forth. Were you able to increase oxygen
		production?	(Return the slider to 50% when finished.)
	C.	Move the CO2 level slider back and for	th. Were you able to increase oxygen
		production?	(Return the slider to 200 ppm when finished.)
2.	<u>Analyz</u>	ze: In this situation, what was the limiting	factor?
How do you know?			

3. <u>Challenge</u>: In each of the situations below, use the Gizmo to find the limiting factor.

Temperature	Light intensity	CO ₂ level	Limiting factor
25°C	60%	700 ppm	
15°C	20%	200 ppm	
30°C	50%	400 ppm	

4.	would it be important to know what the limiting factor is?

