MORE Rules for Polyatomic Ions

Pre.....-ate

-ate

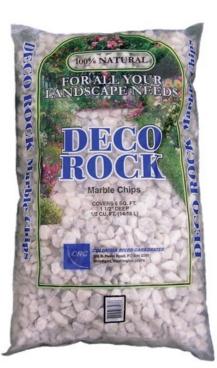
-ite

Hypo ...-ite

Bi-

Concentrate on learning, and becoming familiar with all of the **-ate** ions first (the ones containing large amounts of Oxygen or 'oxyions').

THESE HAVE SULFATES!



PHOSPHATES

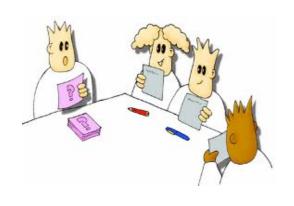
Carbonates

Phosphate, Chlorate, Nitrate, Sulphate, Carbonate...

Once you know the **-ate** ions then follow these rules for the per-ate, ite, and hypo-ite etc...

Per... -ate Rule

Per... –ate ions have ONE MORE oxygen than the –ate ions.


Sodium Chlorate NaClO₃

Sodium Perchlorate NaClO₄

Chlorate ion = CIO_3^- Perchlorate ion = CIO_4^-

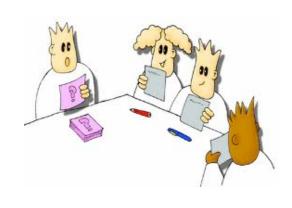
**** NOTE THE CHARGE DOES NOT CHANGE

*** the polyatomic ions containing a halogen base follow this rule

Strontium Perbromate

Tin (IV) Perchlorate

-ite Rule


-ite ions have ONE LESS oxygen than the –ate ions.

Sodium Chlorate NaClO₃

Sodium chlorite NaClO₂

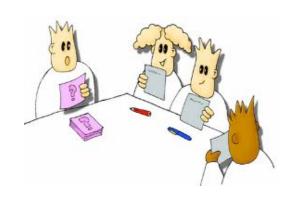
Chlorate ion = CIO_3^- Chlorite ion = CIO_2^-

**** NOTE THE CHARGE DOES NOT CHANGE

Copper (II) Phosphite

Aluminum Sulphite

Hypo...-ite Rule


Hypo...-ite ions have TWO LESS oxygen than the –ate ions.

Sodium Chlorate NaClO₃

Sodium Hypochlorite NaClO

Chlorate ion = CIO_3^- Hypochlorite ion = CIO^-

**** NOTE THE CHARGE DOES NOT CHANGE

Barium Hypobromite

Tungsten Hypochlorite

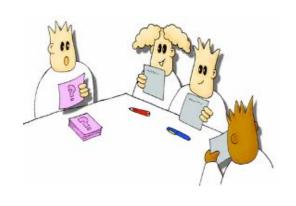
Bi... Rule

Bi... indicates the presence of hydrogen. This drops the charge by 1

carbonate CO_3^{2-}

bicarbonate HCO₃¹⁻

sulphate SO_4^{2-}


bisulphate HSO₄¹⁻

sulphite SO₃²

bisulphite HSO₃¹⁻

These are the only ones you will see

**** NOTE THE CHARGE DROPS by ONE from 2- to 1-

Calcium Bicarbonate

Nickel (II) Bisulphate

Rule exception

Permanganate ion MnO_4^{1-} ...though you might think, there is no manganate ion MnO_3^{1-}

That's why permanganate ion is on your chart.