Refraction Index (Snell's Law)

The Index of Refraction

- The amount by which a transparent medium decreases the speed of light is called the refractive index.
- Larger refractive indexes decreases the speed of light the most.

Calculating Index of Refraction Using Angles

• The refractive index (n) can be calculated using the following;

The Index of Refraction

What is the refractive index, **n** of this medium Y, if the incident ray is travelling through air?

Calculating Index of Refraction using Light Speeds

The refractive index n can also be calculated if you know;
-speed of light in the medium, (v)
-speed of light in a vacuum, (c) c = 3.00 × 10⁸ m/s

Index of refraction(n) = Speed of light in vacuum Speed of light in medium

OR

$$n = \underline{c}$$

V

The Index of Refraction

Index of Refraction Values

Media	Index of refraction	
Vacuum	1.00 (exactly	y)
Air	1.0003	
CO ₂ gas	1.0005	A
Water	1.33	Air
Alcohol	1.36	
Pyrex glass	1.47	Wat
Plexiglas	1.49	
Table Salt	1.51	(/////////////////////////////////////
Flint glass	1.61	//////////////////////////////////////
Sapphire	1.77	Air
Cubic Zirconia	2.16	
Diamond	2.42	
Gallium phosphide	3.50	

Example Problem 1

- The speed of light in a sample of glass is 1.91×10^8 m/s. The speed of light in a vacuum is 3.00×10^8 m/s.
- What is the refractive index of this glass?

v = 1.91 × 10 ⁸ m/s	n = <u>3.00 x 10⁸ m/s</u> =
c = 3.00 × 10 ⁸ m/s	1.91 x 10 ⁸ m/s
	= 1.57
Refractive index n = ?	Therefore, the index of
	refraction is 1.57
$n = \underline{c}$	
V	

Example Problem 2

 What is the speed of light in water given that water has a refractive index of 1.33?

Refractive index of water $n = 1.33$		v = <u>3.00 x 10⁸ m/s</u>
Speed of light in vacuum c = 3.00×10^8 m/s		1.33
		= 2.26 × 10 ⁸ m/s
Speed of light in water v 2		Thorofora, the encod of light in
Speed of light in water v = ?		water is 2.26 × 10 ⁸ m/s.
n = <u>c</u>	$V = \underline{C}$	
V	n	
V	n	
V	n	

• What is the speed of light in plexiglass given it has a refractive index of 1.49?

a. The speed of light in some solid is 1.863×10^8 m/s. What is its refractive index?

b. What could the substance be based on this chart?

Media	(n)
Vacuum	1.00 (exactly)
Air	1.0003
CO ₂ gas	1.0005
Water	1.33
Alcohol	1.36
Pyrex glass	1.47
Plexiglas	1.49
Table Salt	1.51
Flint glass	1.61
Sapphire	1.77
Cubic Zirconia	2.16
Diamond	2.42
Gallium phosphide	3.50