Refraction Index
(Snell's Law)


## The Index of Refraction

- The amount by which a transparent medium decreases the speed of light is called the refractive index.
- Larger refractive indexes decreases the speed of light the most.



## Calculating Index of Refraction Using Angles

- The refractive index ( $\mathbf{n}$ ) can be calculated using the following;

$$
n=\frac{\sin <i}{\sin <R}
$$



## The Index of Refraction

$n=s \underline{\sin }<i$<br>$\sin <R$<br>$n=\frac{\sin 50^{\circ}}{\sin 29^{\circ}}$<br>$n=\frac{.766}{.485}$<br>$n=1.58$



What is the refractive index, $\mathbf{n}$ of this medium Y , if the incident ray is travelling through air?


## Calculating Index of Refraction using Light Speeds

- The refractive index $\mathbf{n}$ can also be calculated if you know;
-speed of light in the medium, (v)
-speed of light in a vacuum, (c) c=3.00 $\times 10^{8} \mathrm{~m} / \mathrm{s}$

Index of refraction(n) = Speed of light in vacuum Speed of light in medium

## OR

$$
n=\underline{c}
$$

$v$

## The Index of Refraction



## Index of Refraction Values

| Media | Index of refraction |  |
| :--- | :--- | :--- |
| Vacuum | 1.00 (exactly) |  |
| Air | 1.0003 |  |
| $\mathrm{CO}_{2}$ gas | 1.0005 |  |
| Water | 1.33 |  |
| Alcohol | 1.36 |  |
| Pyrex glass | 1.47 |  |
| Plexiglas | 1.49 |  |
| Table Salt | 1.51 |  |
| Flint glass | 1.61 | Air |
| Sapphire | 1.77 |  |
| Cubic Zirconia | 2.16 |  |
| Diamond | 2.42 |  |
| Gallium phosphide | 3.50 |  |

## Example Problem 1

- The speed of light in a sample of glass is $1.91 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The speed of light in a vacuum is $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
- What is the refractive index of this glass?

| $\mathrm{v}=1.91 \times 10^{8} \mathrm{~m} / \mathrm{s}$ |  |
| :--- | :--- |
| $\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ | $\mathrm{n}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.91 \times 10^{8} \mathrm{~m} / \mathrm{s}}=$ |
| $=1.57$ |  |$\quad$| Therefore, the index of |
| :--- |
| Refractive index $\mathrm{n}=?$ |
| $\mathrm{n}=\underline{\mathrm{c}} \mathrm{v}$ |$\quad$| refraction is 1.57 |
| :--- |

## Example Problem 2

- What is the speed of light in water given that water has a refractive index of 1.33 ?
Refractive index of water $\mathrm{n}=1.33$
Speed of light in vacuum $\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Speed of light in water $\mathrm{v}=$ ?

| $n=\underline{c}$ |
| :---: |
| v |

$$
\begin{aligned}
& v=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.33} \\
& =2.26 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Therefore, the speed of light in water is $2.26 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

- What is the speed of light in plexiglass given it has a refractive index of $1.49 ?$

a. The speed of light in some solid is $1.863 \times 10^{8} \mathrm{~m} / \mathrm{s}$. What is its refractive index?
b. What could the substance be based on this chart?

| Media | (n) |
| :--- | :--- |
| Vacuum | 1.00 (exactly) |
| Air | 1.0003 |
| $\mathrm{CO}_{2}$ gas | 1.0005 |
| Water | 1.33 |
| Alcohol | 1.36 |
| Pyrex glass | 1.47 |
| Plexiglas | 1.49 |
| Table Salt | 1.51 |
| Flint glass | 1.61 |
| Sapphire | 1.77 |
| Cubic Zirconia | 2.16 |
| Diamond | 2.42 |
| Gallium phosphide | 3.50 |

