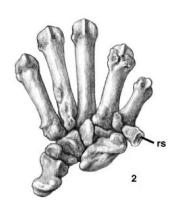
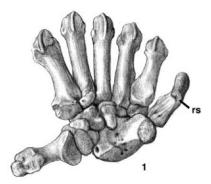

Taxonomy and Biodiversity

Which two species are most closely related?


THE QUESTION

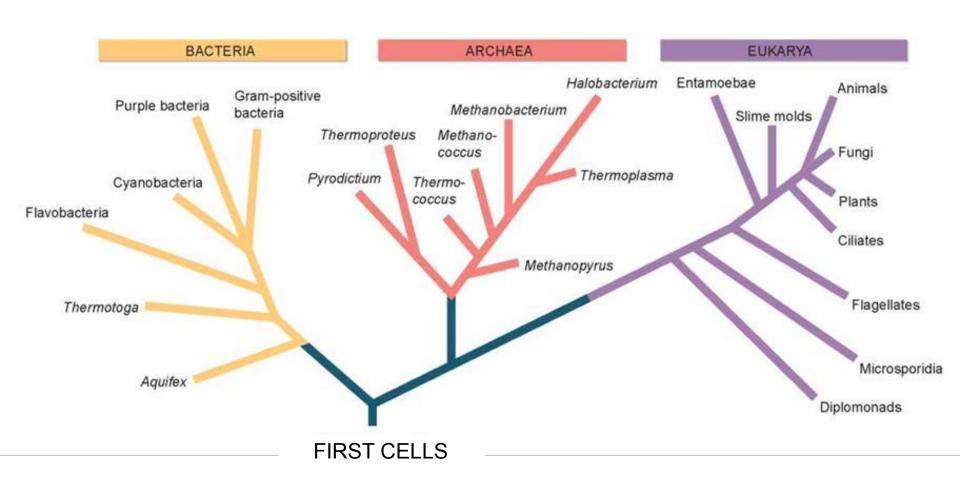

What is a Panda?

THE QUESTION

What is a Panda?

THE QUESTION

What is a Panda?



Taxonomy Part 1

Classification

THE 3 DOMAINS

Carl Woese made an amazing discovery in biology... Watch the short video clip as he relives his discovery. As you watch:

1. Make note of why his discovery was so important.

2. How are archaea fundamentally different from other PROKARYOTIC cells.

EDUCATION

Domains

Three Domain system

- Eubacteria
 - PROKARYOTIC
 - No histone proteins
 - No introns in DNA (non coding regions)
 - Peptidoglycan cell wall

Archaea

- PROKARYOTIC
- Histone-like proteins
- Some introns
- Non-Peptidoglycan cell wall

Eukaryota

- PROKARYOTIC
- Histone proteins
- Introns frequent
- Non-Peptidoglycan cell wall (cellulose, chitin, etc)

Carolus Linnaeus

- Hey Swedish scientist/ naturalist
- Develop a hierarchical classification system (1753)
- Used binomial nomenclature to name each species

How do we classify organisms?

- · Kingdom is the top level in categorizing
- There are 7 levels in total:

	Eg: housefly	Eg: human
Kingdom	Animalia	Animalia
Phylum	arthropod	chordata
Class	insecta	mammalia
Order	diptera	primates
Family	muscidae	hominidae
G enus	Musca	Homo
Species	domestica	sapiens

Kingdom

Phylum

Class

Order

Family

Genus

Species

KPCOFGS

King Philp cut open five green snakes

Taxonomy and Natural Classification

- Species of the same taxa, will have a common ancestor!
 - eg... finches and warblers have a common ancestor while finches and flies do not
- Some species will appear similar, because of convergent evolution (eg. Bees vs yellow jackets Hornets vs Wasps) but should not be classified
- New species will be added by first classifying into higher taxa like kingdom, phylum, class, order...etc
- It allows prediction of characteristics of related species
 - eg. similarities biochemically and physically in species of the same genus

Taxonomy and Natural Classification

Kingdom:	<u>Animalia</u>	Kingdom:	<u>Animalia</u>	Kingdom:	<u>Animalia</u>
Phylum:	<u>Arthropoda</u>	Phylum:	<u>Arthropoda</u>	Phylum:	Arthropoda
Class:	<u>Insecta</u>	Class:	<u>Insecta</u>	Class:	<u>Insecta</u>
Order:	<u>Hymenoptera</u>	Order:	<u>Hymenoptera</u>	Order:	<u>Hymenoptera</u>
Family:	Vespidae	Family:	<u>Apidae</u>	Family:	Vespidae

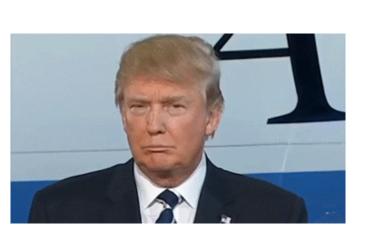
Hornet (0.7 – 0.9 in)

Bee (0.4 – 0.6 in)

Wasp (0.4 – 0.7 in)

Binomial Nomenclature

- every living thing has its own name that includes
 Genus & species
- Genus_ is given an upper case first letter
- the second name is the species (all lower case)
- *Italics* are used in print on documents


examples:

Name of the house fly: Musca domestica

Name of a beaver: Castor canadensis

Latin names often describe some feature about the organism

Which of the following are most closely related? Does classification reflect this?

Human Chimp Baboon Animalia Kingdom Animalia Animalia phylum chordata chordata chordata class mammalia mammalia mammalia order primates primates primates hominidae family hominidae Cercopithecidae Pan apio Homo genus species *Troglodytes* anubis sapiens

Six Kingdom

- Bacteria E. Coli, Streptococcus
- Archaea- methanogens
- Protista amoeba, paramecium, algae
- Fungi mushrooms, mould
- Animal- insects, worms, fish, birds... etc
- Plant- mosses, ferns, trees... etc

- 1. Teeth visiblego to 2
 Teeth not visiblego to 4
- 2. Has a wide, toothy smileSmilus toothyusgo to 3
- 3. Visibly cryingSmilus dramaticus FrowningSmilus upsettus
- 4. Eyes are symmetrical go to 5Eyes not symmetricalgo to 8
- 5. Eyes shaped like hearts Smilus valentinusEyes are shaped as ovalsgo to 6
- 6. Smiling, happy face Smilus traditionalisNot happy, frowning or othergo to 7
- 7. Mouth curved down, frowning Smilus saddus Mouth is a small circleSmilus suprisus
- 8. Has a pirate eye patchSmilus piratusDoes not have eye patch go to 9
- 9. One eye is much larger than the other eye Smilus mutatus ...One eye is winkingSmilus winkus

USING A DICHOTOMOUS KEY

Many aquatic plants in aquariums in biology laboratories belong to one of these four genera:

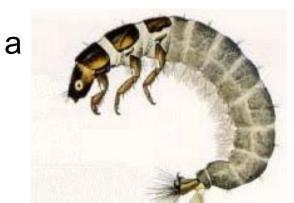
Cabomba

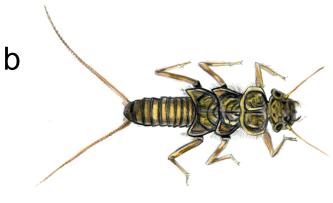
Ceratophyllum

Elodea

Myriophyllum

All of these plants have cylindrical stems with whorls of leaves. The shape of four leaves is shown in the figure (below). A key can be used to identify which of the four genera a plant belongs to, if it is known to be in one of them.


Leaves divided into many filamentous segments


Myriophyllum

Identification Using a Dichotomous Key

- » Key consists of numbered steps
- » Each step offers only 2 alternative characteristics that are all inclusive and mutually exclusive
- » Each step identifies the next step to go
- » Eventually the identification of the species will be reached

1.		Does not have a distinct head Has a distinct head	•
2.		Has two or three tails Tail is absent	
3.	a.	Has two tails; two claws on foot	Order Plecoptera (stoneflies)
	b.	Has three tails; one claw on	Order Ephemeroptera (mayflies)
4.	a.	Prolegs with a claw at end of abdomen	Order Tricoptera (caddisflies)
	b.	Prolegs absent; no hook	Order Coleoptera (beetle larvae)
	•		

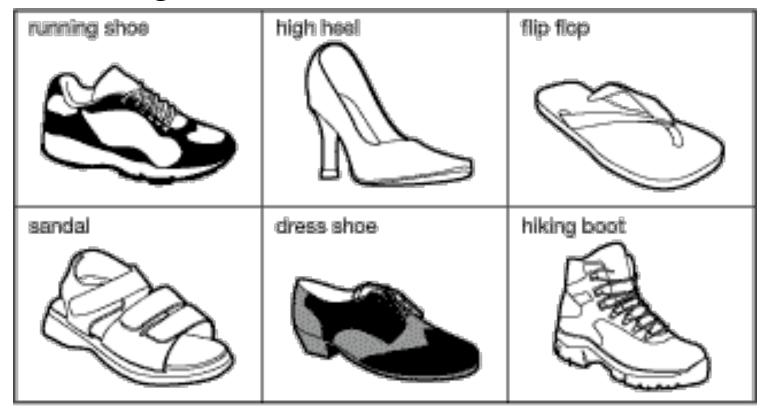


Table 2 Dichotomous Key for Protist Identification					
1	(a) Cilia are present.	Go to 6			
5	(b) Cilia are absent.	Go to 2			
2	(a) Flagella are present.	Go to 4			
	(b) Flagella are absent.	Go to 3			
3	(a) Organism is asymmetrical and has pseudopodia.	Amoeba			
	(b) Organism is spherical and has needlelike pseudopodia.	Actinophrys			
4	(a) Organism has a single flagellum.	Goto 5			
	(b) Organism has two or more flagella.	Chilomonas			
5	(a) Organism has chloroplasts.	Euglena			
	(b) Organism lacks chloroplasts.	Peranema			
6	(a) Cilia are present around entire body; no projections around body.	Go to 7			
	(b) Cilia are present only around	Halteria			
	anterior opening; projections around body.				
7	(a) Organism is 200-350 um long.	Paramecium			
	(b) Organism is 500-800 um long.	Spirostomum			

Let's make our own Dichotomous Key

How should we start to group the following?:

Remember...

- Only two choices per number
- Use clear characteristics (descriptive
- If you use size as a characteristic, you must reference something else

```
(eg., length is 3X as long as width; less than 20 cm...)
```

Do NOT use ambiguous terms such as, "long" "short" "wide" "big" "small"