

Science related Questions?

- » Three parts:
- » 1. MCQ on an scantron (26)
- » 2. Images write on the sheet (14)
- » 3. Short answer. Write on the Page (24)
- » Time 75 minutes.

Break Time

madmagazine.com

Proposal

Visualize your Ideals in an Annotated diagram

- 5 Beaker filled with 300 ml tap water
- 5 duck weed single leaf plants
- placed under sunlight for 10 days
- took the dry weight of final duck weed after 10 days

INCLUDE POSITIVE, Negative, Confounding variables

- 5 Beaker filled with 300 ml tap water
- 5 duck weed single leaf plants
- 2 g of maple leaf material added
- placed under sunlight for 10 days
- took the dry weight of final duck weed after 10 days

00

C

- · 5 duck weed single leaf plants
- 2 g of pine needle material added
- placed under sunlight for 10 days
- took the dry weight of final duck weed after 10 days

- 5 Beaker filled with 300 ml tap water
- 5 duck weed single leaf plants
- 1 g of pine needle material added
- 1 g of maple leaf material added
- placed under sunlight for 10 days
- took the dry weight of final duck weed after 10 days

*Water loss was topped up each day

*Day photos and temperatures are be taken

How hard was that ?

- » Break off in pairs (social distance)
- » Explain your experiment to your partner
- » Partner listens and then pokes holes in the experiment. i.e. Try to make them cry
- » Make changes to your proposal
- » Switch roles

BIOLOGY IA 2020-2021 Biology IA Checklist

WHAT IS A BIOLOGY IA?

- IA = Internal Assessment
 - Some is completed in class, marked by your teachers, marks sent to IB, random sample sent to IB to check accuracy of marking
 - 20% of your final HL Biology mark
 - An original/new experiment about a living organism that you design and conduct yourself, record and analyze observations and report results; you could also use a database with results from another researcher and analyze them in a new way or a simulation with data collection
 - Need to examine the effects of an independent variable on a measurable, quantifiable dependent variable
 - Like a mini-Biology EE

COMPONENTS OF IA WRITE-UP: INTRODUCTION

- Background information, include personal engagement (why is it important to you?)
- Research question
- Scientific rationale (Why should this be investigated?)
- Experimental/data collection method

COMPONENTS OF IA WRITE-UP: ANALYSIS

- Data in tables, including consideration of uncertainties
- Graphs
- Statistical Analysis

COMPONENTS OF IA WRITE-UP: EVALUATION

- Conclusion justified by data, with reference to scientific concepts
- Discussion of relevant limitations (What could you not control?)

 Suggestion of realistic improvements and/or possibilities for future research

HOW DO I GET IDEAS FOR AN IA?

- Choose a topic that's meaningful/ interesting to you (Personal Engagement is necessary)
- Science News
- Lifestyle "hacks": cooking, gardening, health, cleaning, beauty
- YouTube

IA INSPIRATION

• <u>https://www.thinkib.net/biology/page/34574/ia-experiment-ideas-inspired-by-youtube</u>

RSS EQUIPMENT AVAILABLE FOR DATA COLLECTION

Glassware

- Microscopes, slides
- **Bunsen burners**
- Hot plates
- Electronic balances (mass)
- Incubator

- Vernier probes (data collection):
- Dynamometer (grip strength, pinch strength, muscle fatigue)
- Hand Grip Heart Rate monitor
- · Exercise heart rate monitor
- O2 gas sensor
- CO2 gas sensor
- Dissolved oxygen
- · Gas pressure sensor
- pH meter
- Spectrophotometer (pigmentation)
- Colorimeter
- Temperature probes

ITEMS YOU WILL NEED TO OBTAIN

- Seeds (investigate germination subject half to one condition/variable vs other half = control)
- Plants (purchase plants grown in same conditions, subject half to one variable, other half = control)
- Kitchen supplies (salt, baking soda, coffee filters)

SIMULATION IDEAS

- Explorelearning.com Gizmos (expires Dec 31, 2020)
- Take screenshots of results/get other subjects to take screenshots and share
 - Sight vs Sound reaction times
 - Time estimation
 - Real time histogram
 - Reverse the field
 - Hearing frequency and volume

EXAMPLES OF DATABASES

- Global Invasive Species Database
- <u>CITES endangered species database</u>
- <u>ReefBase</u> coral reef health survey data
- Wallace Resource Library
- USDA nutrients database
- WHO Global Health Observatory
- NOAA Climate and weather databases
- Menstrual cycle hormones database (and spreadsheet)
- Entrez gene sequence database (here's our activity)
- http://datanuggets.org/resources/data/
- <u>https://www.ncbi.nlm.nih.gov/gene/</u>

	8	C	D		E	G	н
2	21	2.95	10.58	6.7	179.53	9.71	0.3
2	22	2.02	4.62	6.96	207.75	11.25	0.5
2	23	1.3	3.59	5.56	234.07	15.65	0.5
2	24	1.29	3.65	20.71	125.5	7.78	0.4
2	25	1.37	2.74	13.25	128.07	7.7	0.
2	26	1.85	4.41	17.19	123.92	4.98	0.4
Mandana - 10			4	7.15	116.1	4.75	0.6
Verdana - 10 -	A A 🐄 • %	· = 2	3.36	5.21	138.56	3.03	0.7
B I = 0 - 1	· · · · · · ·	a 2	4.61	11.83	135.73	1.88	0.7
-							
X Cut		2.69	1.09	7.7	20.32	0.88	0.
En Copy	1	4.37	2.74	7.29	19.11	0.77	0.1
Paste Options	20	4.25	2.48	10.93	62.51	1.95	0.8
		4.19	2.92	4.05	65.18	2.05	0.8
**	;	5.33	2.6	5.37	143.2	1.54	0.
		4.45	3	7.09	75.29	1.92	0.6
Paste Special	1	4.7	4.62	28.49	63.88	1.84	0.9
Insert	1	5.53	3.26	8.7	82.74	1.73	0.6
Delute		6.21	4.15	8.99	29.93	0.45	0.3
Peseis	0	6.2	5.63	9.31	125.42	1.29	0.5
Clear Contents	1	6.89	5.64	6.21	116.78	1.18	0.5
E Format Cells	2	7.03	5.67	5.57	48.49	0.28	0.2
	3	7.2	7.1	4.78	34.37	0.14	0.2
Bow Height	4	5.79	7.01	7.34	36.48	0.47	0.1
hilde	5	5.54	5.11	11.76	48.2	0.18	0.1

HOW TO COVID-PROOF YOUR IA:

- Design an experiment that:
 - Does not require much time or equipment
 - Could be conducted in the Biology lab early in Quad 2
 - Could be conducted at home
 - Makes use of computer simulations (Gizmos)
 - Uses an existing database that you analyze in a new way

WHAT NOT TO DO

- Do not research something that has already been investigated (do background research)
- No animal subjects, observation studies in natural settings OK.
- No physical stress on human subjects
- No growing bacteria or molds
- Anything unsafe or unethical
- No prescribed labs (doing these in class)

- Microscope-cell structure
- Estimation of osmolarity in tissues
- Investigating factor affecting enzyme activity that we've done.

- Sealed Mesocosm
- Monitoring ventilation in humans at rest and after exercise

EXPERIMENTS TO AVOID

DUE DATES

- Final INVESTIGATION PROPOSAL due Friday October 30th proposal outline (form you have)– to be attached to an Edsby message
- EXPLORATION due Monday November 23rd
 - Research question, background, safety, ethical & environmental issues,
 - experimental design, procedure
- DATA COLLECTION & ANALYSIS due Friday December 11th

Feedback to you over the christmas holiday.

- FIRST DRAFT due Monday January 11th formal feedback to you by Friday January 15th
- FINAL IA due Friday February 12th

- Take photos of the stages of your experiment
- Do your very best if any IB exam components are cancelled (last year French exam cancelled), then IA is weighted heavily
- Pay attention to marking scheme
- Check out "How to write a Biology IA videos on YouTube
- Read sample Biology IAs that received high scores + feedback

EXAMPLES OF IAs

 GOOD examples —>See the IA duo tang I gave you. Ideas about marking is there.

HELPFUL RESOURCES

Your textbook: Oxford Biology textbook p. 708-712

Original research papers: https://datasetsearch.research.google.com/

How to write a Biology IA that gets top marks:

https://www.youtube.com/watch?v=YrokMNND6Co

Excellent IB Biology websites by experienced IB teachers:

- https://www.mrgscience.com/ibdp-biology.html
- https://ib.bioninja.com.au/
- <u>https://www.thinkib.net/biology/page/17622/the-investigation</u>

Pathways of Photosynthesis Light-Dependent Reactions

Photosynthesis Overview

Copyright C Pearson Education, Inc., publishing as Benjamin Cummings.

2 Stages of Photosynthesis

• light-dependent reactions (Covered here)

 light energy is captured and used to synthesize ATP and NADPH

light-independent reactions (Calvin cycle)

 – energy in ATP and NADPH is used to "fix" CO₂ into simple carbohydrate molecules

Light-Dependent Reactions

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Light-Dependent Reactions

- absorption of a photon of light <u>excites</u> electrons in chlorophyll
- in thylakoid membranes, the excited electrons are transferred to <u>primary electron acceptors</u> AKA Photoactivation
- occurs in photosystems I (P700) and Photosystem II (P680)
- electrons are regained back by photolysis (splitting water which releases O2)

Photosystems

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Photosystems

- <u>antenna pigments</u> chlorophyll molecules & accessory pigments in a protein matrix
- <u>reaction centre</u> chlorophyll *a* & primary electron acceptor

Visit the Khan Academy...

Great summary explanation (10 minutes long) https://www.youtube.com/watch?v=vEsAtC9d_MQ

Photosystems

Light-Dependent Reactions

- Located in the thylakoid membrane (Grana for many thylakoid)
- <u>excitation of electron</u> in Photosystems, results is transferred to a primary electron acceptor
- **linear electron flow** electrons lost by chlorophyll a, move to a primary electron acceptor which is then is transferred along until is reaches the electron carrier NADP+ to form NADPH
- The electrons that are lost by chlorophyll a are replaced by the splitting of water and producing O_2
- A gradient (like cellular respiration) is formed to generate ATP from ATP synthase.

Electron Transport

Non-cyclic Electron Flow

NAD+ & NADP+

- nicotinamide adenine dinucleotide phosphate
- coenzyme used in anabolic reactions such as photosynthesis

Cyclic Electron Flow

Copyright C Pearson Education, Inc., publishing as Benjamin Cummings.

Other Resource

